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Abstract. The theory of dynamical but non-Cartan (or non-Noether) symmetries is studied using
the symplectic formalism approach. It is shown that the superintegrability of then-dimensional
non-isotropic harmonic oscillator is directly related to the existence of dynamical but non-Cartan
symmetries.

1. Introduction

A superintegrable system is a system that is integrable (in the Liouville–Arnold sense) and
that, in addition to this, possesses more constants of motion than degrees of freedom [1–21].
If the numberN of independent constants takes the valueN = 2n− 1 (wheren is the number
of degrees of freedom) then the system is called maximally superintegrable. There are three
classic and well known cases of this very particular class of systems, namely, the free particle,
the Kepler problem, and the harmonic oscillator with rational frequencies. In all these three
cases it is known that all the orbits become closed for the case of bounded motions. This high
degree of regularity (the existence of periodic motions) is a consequence of their superintegrable
character. An important point to note is that these three systems are superintegrable not only
in the standard case ofn = 3 but also in the general case of an arbitrary numbern of degrees
of freedom. More recently the existence of other less simple superintegrablen-dimensional
systems such as the Calogero–Moser system [4, 21], the Smorodinsky–Winternitz system [11],
or the hyperbolic Calogero–Sutherland–Moser model [20] has been proved.

According to the Noether approach to the dynamics, the existence of integrals of motion is
related to the theory of symmetries. Consequently superintegrable systems must be considered
as systems endowed with a rich variety of symmetries. The purpose of this paper is to present
a study of the superintegrability of then-dimensional harmonic oscillator using the geometric
formalism and the theory of symmetries as an approach.

The paper is organized as follows. In section 2 we present a detailed (but non-geometric)
discussion of the particularn = 2 case. Section 3 is devoted to the geometric study of the
theory of symmetries (dynamical, Cartan and non-Cartan symmetries) and then section 4 states
the direct relation between the superintegrability of the harmonic oscillator and the existence
of dynamical but non-Cartan symmetries.
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2. Superintegrability of the harmonic oscillator

Then = 2 harmonic oscillator

HHO = 1
2(p

2
1 + p2

2) + 1
2(ω1

2q2
1 + ω2

2q2
2)

is a trivially integrable system, since it is a direct sum of sytems with one degree of freedom
and, therefore, it has the two one-degree of freedom energies,E1 andE2, as involutive
integrals. If the oscillator is isotropic then it has the angular momentum as an additional
integral of motion [8, 20, 22]. If the oscillator is non-isotropic then the angular momentum
is not preserved, but in the very particular case in which the quotient of the two frequencies
is rational the system has a third additional nonlinear integral. In geometric terms the phase
space is foliated by tori and every integral curve is a curve with constant slope on a torus.
The slope of the curve is determined by the ratioω2/ω1. Thus, if this ratio is irrational the
corresponding curve will be dense on the torus. If this ratio is rational then the orbit becomes
closed and the motion will be periodic.

Let us denote the following two functions byTi = Ti(q, p), i = 1, 2:

Ti = sin−1 zi zi = ωiqi√
ω2
i q

2
i + p2

i

(for ease of notation we write all the indices as subscripts). Then we have

d

dt
Ti = ωi i = 1, 2.

Let us denote byI ti , i = 1, 2, the two functions

I ti = sin−1 zi − ωit i = 1, 2.

Then we have
d

dt
I ti = 0 i = 1, 2.

So the functionsI ti , i = 1, 2, are time-dependent constants of motion. Moreover the function
I12 defined by

I12 = ω2 sin−1 z1− ω1 sin−1 z2

is also a constant of motion.
Notice that the functionsTi are defined out of the origin and up to 2π . Notice also

that everyI ti is a single-dependent degree of freedom function. ConcerningI12, it must be
considered as introducing a coupling between the two degrees of freedom. In fact it can be
written as

I12 = I 0
12 + I a12 I a12 = 2π (ω2k1− ω1k2) k1, k2 = 0,±1,±2, . . .

whereI 0
12 is the fundamental value andI a12 represents the ambiguity. Ifω2/ω1 is rational

this ambiguity (that is a multiple of 2π ) can be removed fromI 0
12; only in this caseI12 is a

well-defined function.
This integralI12 will lead to the angular momentum for the isotropic case, and to the

corresponding nonlinear constant for the non-isotropic rational case. If we make use of the
complex logarithmic function

sin−1 zi = (−i) log

[
iωiqi + pi√
ω2
i q

2
i + p2

i

]
i = 1, 2
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then the integralI12 can be transformed into the following expression:

J12 = (p1 + iω1q1)
ω2(p2 − iω2q2)

ω1

= (ω2
1q

2
1 + p2

1)
ω2/2(ω2

2q
2
2 + p2

2)
ω1/2 exp

[
i(ω2θ1− ω1θ2) + 2π i(ω2k1− ω1k2)

]
.

Only if ω2/ω1 is rational isJ12 a well-defined function. Ifω2/ω1 = m/n then Im(J12) and
Re(J12) are polynomials in the momenta of degreem + n− 1 andm + n, respectively. Next,
we give the expressions for these two constants for the first three cases:

(i) The isotropic caseω2 = ω1 = ω
Re(J12) = p1p2 + ω2q1q2

Im (J12) = q2p1− q1p2.

Im (J12) is just the angular momentum, and Re(J12) is the non-diagonal component of the
Fradkin tensor [23].
(ii) The non-isotropic case withω2 = 2ω, ω1 = ω

Re(J12) = p2
1p2 − ω2(q1p2 − 4q2p1)q1

Im (J12) = (q1p2 − q2p1)p1 + ω2q2
1q2.

(iii) The non-isotropic case withω2 = 3ω, ω1 = ω
Re(J12) = p3

1p2 − 3ω2(q1p2 − 3q2p1)q1p1− 3ω4q3
1q2

Im (J12) = 3(q1p2 − q2p1)p
2
1 − ω2(q1p2 − 9q2p1)q

2
1 .

Consequently, in this particularn = 2 case, superintegrability arises as a consequence of
the existence of two functionsTi , i = 1, 2, that can be considered as generating the additional
integrals of motion. First they give rise to the two functionsI ti , i = 1, 2, in such a way that
we obtain the time-dependent set{E1, E2; I t1, I t2}. Second we obtain, if a certain property is
satisfied, the time-independent functionI12. In this case the system is superintegrable with the
time-independent set{E1, E2; I12} as a set ofN = 3 fundamental constants.

We close this section with the following observations.

(a) A time-independent system can be endowed with time-dependent constants of motion.
The classical example is then = 1 free particle that possessesI t = q − pt as an integral.
Nevertheless this situation is rather unusual and all the known cases have a very simple
dependence on time (e.g., they are linear functions oft). Concerning the two functionsI t1, I t2,
they can be rewritten as the argument of a constant complex function

I ti = arg(J ti ) J ti = (pi + iωiqi)e
−iωi t

d

dt
J ti = 0 i = 1, 2.

(b) Integrability in the Liouville–Arnold sense (superintegrability) of a time-independent
Hamiltonian system must be related to a set ofn (2n − 1) time-independent integrals. This
means that the existence ofI12 must be considered as more fundamental than the existence of
the pair{I t1, I t2}.
(c) The two functionsI t1, I t2, are well defined as integrals of motion and the problem of the
quotient of the frequencies does not affect them since everyI ti depends only on its own degree
of freedom. That is,I ti (orJ ti ) depends onωi and ignores the value ofωj , i 6= j . Consequently
the time-dependent set ofN = 4 integrals given by{Ei; I ti } is well defined regardless of the
frequencies.
(d) I12 couples the two degrees of freedom and depends of the relation betweenω2 andω1. As
stated above,I12 is a well-defined function only if the quotientω2/ω1 is rational.
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3. Dynamical symmetries and non-Cartan symmetries

The Hamiltonian phase space is the 2n-dimensional symplectic manifold(T ∗Q,ω0) where
T ∗Q is the cotangent bundle of the configuration spaceQ [24–27] andω0 is the canonical
symplectic structure

ω0 = −dθ0 θ0 = pj dqj .

The dynamics is represented by the Hamiltonian vector field0H ∈ X(T ∗Q) of the Hamiltonian
functionH with respect toω0

i(0H )ω0 = dH ω0 = dqj ∧ dpj

(summation over the indexj is understood).
There are two different ways of approaching the theory of symmetries: (1) the symmetries

of the dynamical vector field, and (2) the symmetries of the Hamiltonian system(T ∗Q,ω0, H).
In differential geometric terms, a dynamical symmetry of the dynamics is a vector field

X on T ∗Q such that [X,0H ] = 0 [28]. If X is the complete lift toT ∗Q of a vector field
previously defined onQ thenX is a Lie symmetry (Lie symmetries are projectable ontoQ).

A Noether symmetry is a vector fieldX defined on the configuration spaceQ such that
its complete liftXt to T ∗Q satisfies the following two properties: (i) The Lie derivative ofθ0

with respect toXt is exact (this means thatXt is a symmetry of the symplectic form), (ii)Xt

is a symmetry of the Hamiltonian, that is,Xt(H) = 0. A Cartan symmetry is a vector field
Y that is directly defined onT ∗Q and that also satisfies the above two properties, i.e. (i)LY θ0

is exact and consequentlyLYω0 = 0, and (ii)Y is a symmetry ofH . It is clear that the idea
of Cartan symmetry is just an extension of the idea of Noether symmetry and, conversely, a
Noether symmetry can be considered as a Cartan symmetry that is projectable. Notice that if a
symmetry is of Noether class then it generates a one-parameter group of point transformations.
The transformations generated by Cartan vector fields are more general (momentum-dependent
transformations in the usual language). We also notice that some other authors use the name
Noether for both types of symmetries, and the name Cartan for the symmetries of the time-
dependent one-form2H = θ0 −H dt

Cartan symmetries are important because of the two following properties: (1) every Cartan
symmetry determines an integral of motionI for H , and, (2) every Cartan symmetry is a
symmetry of the dynamics.

The important point is that the converse of (2) is not true; so Cartan symmetries are in
fact a subclass of the dynamical symmetries. The theory of symmetries have been extensively
analysed but, because of property (1), most of the studies have focused on the Noether theorem
and on the Cartan symmetries. So the existence of Hamiltonians with ‘dynamical but non-
Cartan symmetries’ can probably be considered as a rather unusual situation. Nevertheless,
as we will prove, this peculiar situation is the key to understanding superintegrability of the
harmonic oscillator.

The following proposition is of great importance for our geometric approach.

Proposition 1. LetH be a Hamiltonian function and0H the associated Hamiltonian vector
field. Suppose thatX is a dynamical but non-Cartan symmetry. Then
(i) The functionX(H) is a constant of motion.
(ii) The dynamical vector field0H is a bi-Hamiltonian system.

Proof. (i) If X is a dynamical symmetry then [X,0H ] = 0 and we have

i([X,0H ]) ω0 = LX[i(0H ) ω0] − i(0H )[LXω0] = 0.
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We have

LX[i(0H ) ω0] = LX(dH) = d[X(H)]

and therefore

d[X(H)] = i(0H )[LXω0].

Hence we arrive at

0H [X(H)] = i(0H )i(0H )[LXω0] = 0.

Consequently the functionX(H) is a constant of motion.
(ii) Let us denote byωX the two-formωX = LXω0. Notice thatωX, that in the general

caseωX 6= ω0, can be even a non-symplectic two-form (that is, with a non-trivial kernel). The
vector field0H is the solution of the following two equations:

i(0H ) ω0 = dH and i(0H ) ωX = d[X(H)].

So0H is a bi-Hamiltonian vector field. �
We illustrate this situation by the following example. The Hamiltonian vector field0HO

of then = 2 isotropic oscillator is given by

0HO = p1
∂

∂q1
+ p2

∂

∂q2
− ω2q1

∂

∂p1
− ω2q2

∂

∂p2
.

Then the non-Hamiltonian vector field

X = q2
∂

∂q1
+ q1

∂

∂q2
+ p2

∂

∂p1
+ p1

∂

∂p2

is a non-Cartan dynamical symmetry

[X,0HO] = 0 X(HHO) = HX HX = 2 [p1p2 + ω2q1q2].

The new symplectic structure is

ωX = LXω0 = 2 [dq1 ∧ dp2 + dq2 ∧ dp1]

and we obtain the following bi-Hamiltonian formulation

i(0HO) ω0 = dHHO and i(0HO) ωX = dHX.

The next proposition considers the case of a vector field that, although is a symmetry of
the symplectic structure, does not preserve the Hamiltonian.

Proposition 2. LetXT be a Hamiltonian vector field with the functionT as Hamiltonian. If
XT is a dynamical but non-Cartan symmetry then the functionXT (H) = α 6= 0 is a numerical
constant.

Proof. If XT is a dynamical symmetry then [XT , 0H ] = 0 so we have

LXT [i(0H ) ω0] − i(0H )[LXT ω0] = 0.

SinceXT is Hamiltonian vector field we haveLXT ω0 = 0. Therefore we arrive at

LXT [i(0H ) ω0] = d[XT (H)] = 0.

Hence the functionXT (H) = α must be a numerical constant. �
To prove the next proposition we will make use of the time-dependent Hamiltonian

formalism. The time-dependent phase space is now the manifoldM = T ∗Q × R, and the
fundamental geometric structure onM is the exact two-form of contact�H defined as

�H = ω0 + dH ∧ dt.
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The dynamics is given by the unique vector field0̃H defined onM = T ∗Q×R as solution of
the following two equations

i(0̃H )�H = 0 i(0̃H )dt = 1.

In coordinates̃0H takes the form

0̃H =
(
∂H

∂pj

)
∂

∂qj
−
(
∂H

∂qj

)
∂

∂pj
+
∂

∂t
.

Here0̃H is usually called [24] the suspension of0H .
At this point we make the following observation. If0 is a differentiable vector field on

anm-dimensional manifoldM then the maximun number of independent functions which are
invariant along the integral curves of0 is N = m − 1. So0H can have a maximun number
of N = 2n− 1 time-independent integrals since it is defined on(T ∗Q,ω0). However,̃0H , as
defined in(T ∗Q× R, �H ), can admitN = 2n independent time-dependent integrals.

Proposition 3. Let T be a time-independent function,XT its Hamiltonian vector field, and
suppose thatXT is a dynamical but non-Cartan symmetry. Then the time-dependent function
I t defined as

I t = T +XT (H) t

is a time-dependent constant of motion.

Proof. The inner product ofXT with �H is given by

i(XT )�H = i(XT ) ω0 + [i(XT ) dH ] dt

= dT +XT (H) dt = d(T + αt)

where we have taken into account thatα is a numerical constant. Therefore

0̃H (T + αt) = i(0̃H )i(XT )�H
= − i(XT )i(0̃H )�H = 0

and the proposition is proved. �
Now suppose that not one but two different dynamical symmetriesXi , i = 1, 2, of such a

class for the same dynamical vector field0H , and suppose that bothXi are Hamiltonian vector
fields. Let us denote byTi , i = 1, 2, the two independent Hamiltonian functions. Then we
have the following property:

Proposition 4. The vector fieldX12 defined as

X12 = α2X1− α1X2

is a Cartan symmetry.

Proof. The vector fieldX12 is a symmetry of the Hamiltonian

X12(H) = α2X1(H)− α1X2(H)

= α2α1− α1α2 = 0.

X12 is also a symmetry of the symplectic form since it is linear combination of Hamiltonian
vector fields. ThusX12 is a Cartan symmetry. �

Moreover, the inner product ofX12 with the symplectic form is given by

i(X12)ω0 = α2i(X1) ω0 − α1i(X2) ω0

= α2 dT1− α1 dT2 = d(α2T1− α1T2).
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Thus the vector fieldX12 determines the functionI12 = α2T1 − α1T2 as its associated (time-
independent) constant of motion.

Thus, according to this proposition, every pair of two Hamiltonian vector fields which are
dynamical but non-Cartan symmetries determine one Cartan symmetry.

Notice that systems possessing these rather special Cartan symmetries (arising from the
pairing of two dynamical symmetries) must necessarily be systems with time-dependent
constants. This means a restriction since, as stated above, the number of known time-
independent systems possessing time-dependent integrals seems to be very reduced. In any
case, the existence of such a coupling between the two function(T1, T2) gives rise to a new
integral of motion.

Crampin proved [28] that, in the tangent bundleTQ, the existence of a ‘dynamical but
non-Cartan symmetry’ which is projectable (i.e. a non-Noether Lie symmetry) is related to the
existence of an alternative Lagrangian. Alternative Lagrangians are related to new symplectic
structures and to non-Noether constants of motion. So there is a relation between non-Cartan
symmetries and alternative ways of obtaining integrals of motion. We point out that the result
given by proposition 4 do not require the condition of projectability.

For then = 2 case, ifH is integrable with involutive integralsI1, I2, the existence of two
generating functions(T1, T2) leads to a new functionI12. If dI1∧dI2∧dI12 6= 0 thenI12 is
independent andH is superintegrable. The important point is that this superintegrability must
be considered as a consequence of the previous existence of the pair(T1, T2).

The generalization of this last result to the generaln-dimensional case is as follows. Let
then-dimensional Hamiltonian system(T ∗Q, ω0, H) be integrable withn independent and
involutive integralsIk, k = 1, 2, . . . , n, arising fromn Cartan (or Noether) symmetries. If
this system hasn independent ‘dynamical but non-Cartan symmetries’ represented by the
Hamiltonian vector fieldsXr , r = 1, 2, . . . , n, then the system has, in addition to then
fundamental integrals, other

(i) n functionally independent time-dependent integralsI tr ;
(ii) 1

2n(n− 1) additional time-independent integralsIrs .

If the vector fieldsXr are independent then so are then Hamiltonian functionsTr , r =
1, 2, . . . , n, and, because of this, the system ofn − 1 functionsIrr+1 is also independent.
Moreover the independence of the set{Ir , Tr} is a sufficient condition for the independence of
{Ir , Irr+1}. In this case the system is not only integrable but also superintegrable.

4. Superintegrability of the harmonic oscillator: II. A geometric approach

Then-dimensional harmonic oscillator

HHO = 1

2

n∑
j=1

p2
j +

1

2

n∑
j=1

ω2
j q

2
j

is trivially integrable with then one-degree of freedom energies as then fundamental involutive
integrals, i.e.Ij = Ej , j = 1, 2, . . . , n.

Let us denote byTr = Tr(q, p), r = 1, 2, . . . , n, the followingn functions:

Tr = sin−1 zr zr = ωrqr√
ω2
r q

2
r + p2

r

.

Notice that everyTr is defined up to a multiple of 2π . So they must be considered as functions
with values inS1. In any case the associated vector fieldsXr , r = 1, 2, . . . , n, are given by

Xr = −�r X0
r �r = ωr

ω2
r q

2
r + p2

r

X0
r = qr

∂

∂qr
+ pr

∂

∂pr
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(no summation over the indexr). We have the following properties: (i)Xr is a symmetry of
the symplectic formω0 sinceXr is Hamiltonian, (ii)Xr is not a symmetry of the Hamiltonan
sinceXr(HHO) = −ωr . SoXr is neither a Noether nor a Cartan symmetry. The important
point is thatXr it is a symmetry of the dynamics. This last property, that can be proved by
direct calculus, can also be seen in the two following ways.

(1) The Lie bracket of two Hamiltonian vector fields is (up to a minus sign) the Hamiltonian
vector field of the Poisson bracket of the two Hamiltonians. So we have

[Xr, 0H ] = −X{Tr ,H }
and

{Tr,HHO} = i(Xr)i(0H ) ω0 = Xr(HHO) = −ωr.
Since the Hamiltonian vector field of a numerical constant vanishes, it follows that [Xr, 0H ]
= 0.
(2) The second alternative approach is to prove that the vector field [Xr, 0H ] is in the kernel
of the symplectic form

i([Xr, 0H ]) ω0 = LXr [i(0H ) ω0] − i(0H )[LXrω0] = dXr(HHO) = −dωr = 0.

Sinceω0 is regular, the kernel is trivial and we arrive at [Xr, 0H ] = 0.

Thus every vector fieldXr = −�rX0
r is a dynamical but non-Cartan symmetry ofHHO.

Consequently we can apply the geometric formalism studied in section 3.
(i) Every non-Cartan symmetryXr , r = 1, 2, . . . , n, determines, in a direct way, the

time-dependent functionI tr = Tr − ωrt as associated constant of motion. HenceHHO has a
time-dependent family ofN = 2n independent integrals given by{Er; I tr }.

(ii) Then functionsTr belong to the setF(T ∗Q,S1) of functions ofT ∗Q toS1. This set is
is aZ-modulus (not a vector space) and, because of this, linear combinatios of functions in this
set are well defined only if the coefficients are integers. Thus ifωr/ωs = mr/ns then everyone
of the vector fieldsXrs = ω(msXr − nrXs), r, s = 1, 2, . . . , n, is a Cartan symmetry with the
function Irs = ω(msTr − nrTs) as Hamiltonian function. HenceHHO has, in the particular
rational case, the time-independent family of functions{Er; Irs } as a set of integrals of motion.

The Z-modulus property can also be approached as follows. The functionsTr are
multivaluated but their differentialsβr = dTr are well-defined one-forms and determine locally
Hamiltonian vector fields. Although the exclusion of the origin makes the manifold non-
contractible (topologically non-trivial), the closed one formsβr are of integer class (mod 2π ).
Thus only integer combinations generate again closed one forms of integer class.

Notice that the functionsIrs are antisymmetric in the two indices, i.e.Isr = −Irs , so the
total number of elements in the familyIrs is (1/2)n(n−1). This means an excessive number of
integrals, but one can choose, inside this family, a more reduced one-parameter subfamily with
justn− 1 independent functions. An appropriate subfamily isIrr+1 that couples every degree
of freedom with the following one. The independence of the family{Tr; r = 1, . . . , n} implies
the independence of{Irr+1; r = 1, . . . , n− 1}, and the property dEr∧dEs∧dIrs 6= 0, r 6= s,
implies the independence of the total set{Er; Irr+1 }. Moreover, in this case the(2n)-form�

defined as� = dE1∧ · · · ∧dEn∧dT1∧ · · · ∧dTn is a volume form.
Thus the superintegrability of then-dimensional harmonic oscillator with rational

frequencies is a consequence of the existence ofn dynamical but non-Cartan symmetries.
Finally we notice that the compatibility beteween points (i) and (ii) can also be considered

from a geometric approach. It is known that superintegrability in compact manifolds leads to
closed trajectories and implies periodicity. This is the case of the Harmonic oscillator where
T ∗Q is foliated by then-dimensional toriT n defined byEr = constant. The vector field0H
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is tangent to this foliation and, as the leaves are compact, the integral curves of0H must be
closed. This property can only be satisfied ifωr/ωs is rational. However, if we consider the
time-dependent suspension0̃H defined inT ∗Q×R then we move out of the compact tori. The
time-dependent phase spaceT ∗Q × R is foliated by(n + 1)-dimensional cylindersT n × R,
the vector field̃0H is tangent to this foliation but, as in this case the leaves are non-compact,
there is no additional condition and the time-dependent integralsI tr are always well defined.
The integral curves of̃0H are open curves that wind up the axisR.
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[21] Rãnada M F 1999 Superintegrability of the Calogero–Moser system: Constants of motion, master symmetries,

and time-dependent symmetriesJ. Math. Phys.to be published
[22] Tabor M 1989Chaos and Integrability in Nonlinear Dynamics(New York: Wiley)
[23] Fradkin D M 1965Am. J. Phys.33207–11
[24] Abraham R and Marsden J 1978Foundations of Mechanics(Reading, MA: Benjamin)
[25] Marmo G, Saletan E J, Simoni A and Vitale B 1985Dynamical Systems: A Differential Geometric Approach

(Chichester: Wiley)
[26] Libermann P and Marle C M 1987Symplectic Geometry and Analytical Mechanics(Dordrecht: Reidel)
[27] de Léon M and Rodrigues P R 1989Methods of Differential Geometry in Analytical Mechanics(Amsterdam:

North-Holland)
[28] Crampin M 1983J. Phys. A: Math. Gen.163755–72


