Dynamical symmetries, non-Cartan symmetries and superintegrability of the n-dimensional harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1999 J. Phys. A: Math. Gen. 321241
(http://iopscience.iop.org/0305-4470/32/7/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 07:59

Please note that terms and conditions apply.

Dynamical symmetries, non-Cartan symmetries and superintegrability of the \boldsymbol{n}-dimensional harmonic oscillator

Carlos López \dagger, Eduardo Martínez \dagger and Manuel F Rañada \ddagger
\dagger Departamento de Matemática Aplicada, CPS, Universidad de Zaragoza, 50015 Zaragoza, Spain \ddagger Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009
Zaragoza, Spain

Received 14 July 1998, in final form 27 November 1998

Abstract

The theory of dynamical but non-Cartan (or non-Noether) symmetries is studied using the symplectic formalism approach. It is shown that the superintegrability of the n-dimensional non-isotropic harmonic oscillator is directly related to the existence of dynamical but non-Cartan symmetries.

1. Introduction

A superintegrable system is a system that is integrable (in the Liouville-Arnold sense) and that, in addition to this, possesses more constants of motion than degrees of freedom [1-21]. If the number N of independent constants takes the value $N=2 n-1$ (where n is the number of degrees of freedom) then the system is called maximally superintegrable. There are three classic and well known cases of this very particular class of systems, namely, the free particle, the Kepler problem, and the harmonic oscillator with rational frequencies. In all these three cases it is known that all the orbits become closed for the case of bounded motions. This high degree of regularity (the existence of periodic motions) is a consequence of their superintegrable character. An important point to note is that these three systems are superintegrable not only in the standard case of $n=3$ but also in the general case of an arbitrary number n of degrees of freedom. More recently the existence of other less simple superintegrable n-dimensional systems such as the Calogero-Moser system [4, 21], the Smorodinsky-Winternitz system [11], or the hyperbolic Calogero-Sutherland-Moser model [20] has been proved.

According to the Noether approach to the dynamics, the existence of integrals of motion is related to the theory of symmetries. Consequently superintegrable systems must be considered as systems endowed with a rich variety of symmetries. The purpose of this paper is to present a study of the superintegrability of the n-dimensional harmonic oscillator using the geometric formalism and the theory of symmetries as an approach.

The paper is organized as follows. In section 2 we present a detailed (but non-geometric) discussion of the particular $n=2$ case. Section 3 is devoted to the geometric study of the theory of symmetries (dynamical, Cartan and non-Cartan symmetries) and then section 4 states the direct relation between the superintegrability of the harmonic oscillator and the existence of dynamical but non-Cartan symmetries.

2. Superintegrability of the harmonic oscillator

The $n=2$ harmonic oscillator

$$
H_{\mathrm{HO}}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2}\left(\omega_{1}^{2} q_{1}^{2}+\omega_{2}^{2} q_{2}^{2}\right)
$$

is a trivially integrable system, since it is a direct sum of sytems with one degree of freedom and, therefore, it has the two one-degree of freedom energies, E_{1} and E_{2}, as involutive integrals. If the oscillator is isotropic then it has the angular momentum as an additional integral of motion [8, 20, 22]. If the oscillator is non-isotropic then the angular momentum is not preserved, but in the very particular case in which the quotient of the two frequencies is rational the system has a third additional nonlinear integral. In geometric terms the phase space is foliated by tori and every integral curve is a curve with constant slope on a torus. The slope of the curve is determined by the ratio ω_{2} / ω_{1}. Thus, if this ratio is irrational the corresponding curve will be dense on the torus. If this ratio is rational then the orbit becomes closed and the motion will be periodic.

Let us denote the following two functions by $T_{i}=T_{i}(q, p), i=1,2$:

$$
T_{i}=\sin ^{-1} z_{i} \quad z_{i}=\frac{\omega_{i} q_{i}}{\sqrt{\omega_{i}^{2} q_{i}^{2}+p_{i}^{2}}}
$$

(for ease of notation we write all the indices as subscripts). Then we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} T_{i}=\omega_{i} \quad i=1,2
$$

Let us denote by $I_{i}^{t}, i=1,2$, the two functions

$$
I_{i}^{t}=\sin ^{-1} z_{i}-\omega_{i} t \quad i=1,2 .
$$

Then we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} I_{i}^{t}=0 \quad i=1,2
$$

So the functions $I_{i}^{t}, i=1,2$, are time-dependent constants of motion. Moreover the function I_{12} defined by

$$
I_{12}=\omega_{2} \sin ^{-1} z_{1}-\omega_{1} \sin ^{-1} z_{2}
$$

is also a constant of motion.
Notice that the functions T_{i} are defined out of the origin and up to 2π. Notice also that every I_{i}^{t} is a single-dependent degree of freedom function. Concerning I_{12}, it must be considered as introducing a coupling between the two degrees of freedom. In fact it can be written as

$$
I_{12}=I_{12}^{0}+I_{12}^{a} \quad I_{12}^{a}=2 \pi\left(\omega_{2} k_{1}-\omega_{1} k_{2}\right) \quad k_{1}, k_{2}=0, \pm 1, \pm 2, \ldots
$$

where I_{12}^{0} is the fundamental value and I_{12}^{a} represents the ambiguity. If ω_{2} / ω_{1} is rational this ambiguity (that is a multiple of 2π) can be removed from I_{12}^{0}; only in this case I_{12} is a well-defined function.

This integral I_{12} will lead to the angular momentum for the isotropic case, and to the corresponding nonlinear constant for the non-isotropic rational case. If we make use of the complex logarithmic function

$$
\sin ^{-1} z_{i}=(-\mathrm{i}) \log \left[\frac{\mathrm{i} \omega_{i} q_{i}+p_{i}}{\sqrt{\omega_{i}^{2} q_{i}^{2}+p_{i}^{2}}}\right] \quad i=1,2
$$

then the integral I_{12} can be transformed into the following expression:

$$
\begin{aligned}
J_{12} & =\left(p_{1}+\mathrm{i} \omega_{1} q_{1}\right)^{\omega_{2}}\left(p_{2}-\mathrm{i} \omega_{2} q_{2}\right)^{\omega_{1}} \\
& =\left(\omega_{1}^{2} q_{1}^{2}+p_{1}^{2}\right)^{\omega_{2} / 2}\left(\omega_{2}^{2} q_{2}^{2}+p_{2}^{2}\right)^{\omega_{1} / 2} \exp \left[\mathrm{i}\left(\omega_{2} \theta_{1}-\omega_{1} \theta_{2}\right)+2 \pi \mathrm{i}\left(\omega_{2} k_{1}-\omega_{1} k_{2}\right)\right]
\end{aligned}
$$

Only if ω_{2} / ω_{1} is rational is J_{12} a well-defined function. If $\omega_{2} / \omega_{1}=m / n$ then $\operatorname{Im}\left(J_{12}\right)$ and $\operatorname{Re}\left(J_{12}\right)$ are polynomials in the momenta of degree $m+n-1$ and $m+n$, respectively. Next, we give the expressions for these two constants for the first three cases:
(i) The isotropic case $\omega_{2}=\omega_{1}=\omega$

$$
\begin{aligned}
& \operatorname{Re}\left(J_{12}\right)=p_{1} p_{2}+\omega^{2} q_{1} q_{2} \\
& \operatorname{Im}\left(J_{12}\right)=q_{2} p_{1}-q_{1} p_{2} .
\end{aligned}
$$

$\operatorname{Im}\left(J_{12}\right)$ is just the angular momentum, and $\operatorname{Re}\left(J_{12}\right)$ is the non-diagonal component of the Fradkin tensor [23].
(ii) The non-isotropic case with $\omega_{2}=2 \omega, \omega_{1}=\omega$

$$
\begin{aligned}
& \operatorname{Re}\left(J_{12}\right)=p_{1}^{2} p_{2}-\omega^{2}\left(q_{1} p_{2}-4 q_{2} p_{1}\right) q_{1} \\
& \operatorname{Im}\left(J_{12}\right)=\left(q_{1} p_{2}-q_{2} p_{1}\right) p_{1}+\omega^{2} q_{1}^{2} q_{2}
\end{aligned}
$$

(iii) The non-isotropic case with $\omega_{2}=3 \omega, \omega_{1}=\omega$

$$
\begin{aligned}
& \operatorname{Re}\left(J_{12}\right)=p_{1}^{3} p_{2}-3 \omega^{2}\left(q_{1} p_{2}-3 q_{2} p_{1}\right) q_{1} p_{1}-3 \omega^{4} q_{1}^{3} q_{2} \\
& \operatorname{Im}\left(J_{12}\right)=3\left(q_{1} p_{2}-q_{2} p_{1}\right) p_{1}^{2}-\omega^{2}\left(q_{1} p_{2}-9 q_{2} p_{1}\right) q_{1}^{2} .
\end{aligned}
$$

Consequently, in this particular $n=2$ case, superintegrability arises as a consequence of the existence of two functions $T_{i}, i=1,2$, that can be considered as generating the additional integrals of motion. First they give rise to the two functions $I_{i}^{t}, i=1,2$, in such a way that we obtain the time-dependent set $\left\{E_{1}, E_{2} ; I_{1}^{t}, I_{2}^{t}\right\}$. Second we obtain, if a certain property is satisfied, the time-independent function I_{12}. In this case the system is superintegrable with the time-independent set $\left\{E_{1}, E_{2} ; I_{12}\right\}$ as a set of $N=3$ fundamental constants.

We close this section with the following observations.
(a) A time-independent system can be endowed with time-dependent constants of motion. The classical example is the $n=1$ free particle that possesses $I^{t}=q-p t$ as an integral. Nevertheless this situation is rather unusual and all the known cases have a very simple dependence on time (e.g., they are linear functions of t). Concerning the two functions I_{1}^{t}, I_{2}^{t}, they can be rewritten as the argument of a constant complex function

$$
I_{i}^{t}=\arg \left(J_{i}^{t}\right) \quad J_{i}^{t}=\left(p_{i}+\mathrm{i} \omega_{i} q_{i}\right) \mathrm{e}^{-\mathrm{i} \omega_{i} t} \quad \frac{\mathrm{~d}}{\mathrm{~d} t} J_{i}^{t}=0 \quad i=1,2
$$

(b) Integrability in the Liouville-Arnold sense (superintegrability) of a time-independent Hamiltonian system must be related to a set of $n(2 n-1)$ time-independent integrals. This means that the existence of I_{12} must be considered as more fundamental than the existence of the pair $\left\{I_{1}^{t}, I_{2}^{t}\right\}$.
(c) The two functions I_{1}^{t}, I_{2}^{t}, are well defined as integrals of motion and the problem of the quotient of the frequencies does not affect them since every I_{i}^{t} depends only on its own degree of freedom. That is, I_{i}^{t} (or J_{i}^{t}) depends on ω_{i} and ignores the value of $\omega_{j}, i \neq j$. Consequently the time-dependent set of $N=4$ integrals given by $\left\{E_{i} ; I_{i}^{t}\right\}$ is well defined regardless of the frequencies.
(d) I_{12} couples the two degrees of freedom and depends of the relation between ω_{2} and ω_{1}. As stated above, I_{12} is a well-defined function only if the quotient ω_{2} / ω_{1} is rational.

3. Dynamical symmetries and non-Cartan symmetries

The Hamiltonian phase space is the $2 n$-dimensional symplectic manifold ($T^{*} Q, \omega_{0}$) where $T^{*} Q$ is the cotangent bundle of the configuration space $Q[24-27]$ and ω_{0} is the canonical symplectic structure

$$
\omega_{0}=-\mathrm{d} \theta_{0} \quad \theta_{0}=p_{j} \mathrm{~d} q_{j}
$$

The dynamics is represented by the Hamiltonian vector field $\Gamma_{H} \in \mathfrak{X}\left(T^{*} Q\right)$ of the Hamiltonian function H with respect to ω_{0}

$$
i\left(\Gamma_{H}\right) \omega_{0}=\mathrm{d} H \quad \omega_{0}=\mathrm{d} q_{j} \wedge \mathrm{~d} p_{j}
$$

(summation over the index j is understood).
There are two different ways of approaching the theory of symmetries: (1) the symmetries of the dynamical vector field, and (2) the symmetries of the Hamiltonian system $\left(T^{*} Q, \omega_{0}, H\right)$.

In differential geometric terms, a dynamical symmetry of the dynamics is a vector field X on $T^{*} Q$ such that $\left[X, \Gamma_{H}\right]=0$ [28]. If X is the complete lift to $T^{*} Q$ of a vector field previously defined on Q then X is a Lie symmetry (Lie symmetries are projectable onto Q).

A Noether symmetry is a vector field X defined on the configuration space Q such that its complete lift X^{t} to $T^{*} Q$ satisfies the following two properties: (i) The Lie derivative of θ_{0} with respect to X^{t} is exact (this means that X^{t} is a symmetry of the symplectic form), (ii) X^{t} is a symmetry of the Hamiltonian, that is, $X^{t}(H)=0$. A Cartan symmetry is a vector field Y that is directly defined on $T^{*} Q$ and that also satisfies the above two properties, i.e. (i) $\mathcal{L}_{Y} \theta_{0}$ is exact and consequently $\mathcal{L}_{Y} \omega_{0}=0$, and (ii) Y is a symmetry of H. It is clear that the idea of Cartan symmetry is just an extension of the idea of Noether symmetry and, conversely, a Noether symmetry can be considered as a Cartan symmetry that is projectable. Notice that if a symmetry is of Noether class then it generates a one-parameter group of point transformations. The transformations generated by Cartan vector fields are more general (momentum-dependent transformations in the usual language). We also notice that some other authors use the name Noether for both types of symmetries, and the name Cartan for the symmetries of the timedependent one-form $\Theta_{H}=\theta_{0}-H \mathrm{~d} t$

Cartan symmetries are important because of the two following properties: (1) every Cartan symmetry determines an integral of motion I for H, and, (2) every Cartan symmetry is a symmetry of the dynamics.

The important point is that the converse of (2) is not true; so Cartan symmetries are in fact a subclass of the dynamical symmetries. The theory of symmetries have been extensively analysed but, because of property (1), most of the studies have focused on the Noether theorem and on the Cartan symmetries. So the existence of Hamiltonians with 'dynamical but nonCartan symmetries' can probably be considered as a rather unusual situation. Nevertheless, as we will prove, this peculiar situation is the key to understanding superintegrability of the harmonic oscillator.

The following proposition is of great importance for our geometric approach.
Proposition 1. Let H be a Hamiltonian function and Γ_{H} the associated Hamiltonian vector field. Suppose that X is a dynamical but non-Cartan symmetry. Then
(i) The function $X(H)$ is a constant of motion.
(ii) The dynamical vector field Γ_{H} is a bi-Hamiltonian system.

Proof. (i) If X is a dynamical symmetry then $\left[X, \Gamma_{H}\right]=0$ and we have

$$
i\left(\left[X, \Gamma_{H}\right]\right) \omega_{0}=\mathcal{L}_{X}\left[i\left(\Gamma_{H}\right) \omega_{0}\right]-i\left(\Gamma_{H}\right)\left[\mathcal{L}_{X} \omega_{0}\right]=0 .
$$

We have

$$
\mathcal{L}_{X}\left[i\left(\Gamma_{H}\right) \omega_{0}\right]=\mathcal{L}_{X}(\mathrm{~d} H)=\mathrm{d}[X(H)]
$$

and therefore

$$
\mathrm{d}[X(H)]=i\left(\Gamma_{H}\right)\left[\mathcal{L}_{X} \omega_{0}\right] .
$$

Hence we arrive at

$$
\Gamma_{H}[X(H)]=i\left(\Gamma_{H}\right) i\left(\Gamma_{H}\right)\left[\mathcal{L}_{X} \omega_{0}\right]=0 .
$$

Consequently the function $X(H)$ is a constant of motion.
(ii) Let us denote by ω_{X} the two-form $\omega_{X}=\mathcal{L}_{X} \omega_{0}$. Notice that ω_{X}, that in the general case $\omega_{X} \neq \omega_{0}$, can be even a non-symplectic two-form (that is, with a non-trivial kernel). The vector field Γ_{H} is the solution of the following two equations:

$$
i\left(\Gamma_{H}\right) \omega_{0}=\mathrm{d} H \quad \text { and } \quad i\left(\Gamma_{H}\right) \omega_{X}=\mathrm{d}[X(H)] .
$$

So Γ_{H} is a bi-Hamiltonian vector field.
We illustrate this situation by the following example. The Hamiltonian vector field $\Gamma_{\text {но }}$ of the $n=2$ isotropic oscillator is given by

$$
\Gamma_{\mathrm{HO}}=p_{1} \frac{\partial}{\partial q_{1}}+p_{2} \frac{\partial}{\partial q_{2}}-\omega^{2} q_{1} \frac{\partial}{\partial p_{1}}-\omega^{2} q_{2} \frac{\partial}{\partial p_{2}} .
$$

Then the non-Hamiltonian vector field

$$
X=q_{2} \frac{\partial}{\partial q_{1}}+q_{1} \frac{\partial}{\partial q_{2}}+p_{2} \frac{\partial}{\partial p_{1}}+p_{1} \frac{\partial}{\partial p_{2}}
$$

is a non-Cartan dynamical symmetry

$$
\left[X, \Gamma_{\mathrm{HO}}\right]=0 \quad X\left(H_{\mathrm{HO}}\right)=H_{X} \quad H_{X}=2\left[p_{1} p_{2}+\omega^{2} q_{1} q_{2}\right]
$$

The new symplectic structure is

$$
\omega_{X}=\mathcal{L}_{X} \omega_{0}=2\left[d q_{1} \wedge d p_{2}+d q_{2} \wedge d p_{1}\right]
$$

and we obtain the following bi-Hamiltonian formulation

$$
i\left(\Gamma_{\mathrm{HO}}\right) \omega_{0}=\mathrm{d} H_{\mathrm{HO}} \quad \text { and } \quad i\left(\Gamma_{\mathrm{HO}}\right) \omega_{X}=\mathrm{d} H_{X}
$$

The next proposition considers the case of a vector field that, although is a symmetry of the symplectic structure, does not preserve the Hamiltonian.
Proposition 2. Let X_{T} be a Hamiltonian vector field with the function T as Hamiltonian. If X_{T} is a dynamical but non-Cartan symmetry then the function $X_{T}(H)=\alpha \neq 0$ is a numerical constant.

Proof. If X_{T} is a dynamical symmetry then $\left[X_{T}, \Gamma_{H}\right]=0$ so we have

$$
\mathcal{L}_{X_{T}}\left[i\left(\Gamma_{H}\right) \omega_{0}\right]-i\left(\Gamma_{H}\right)\left[\mathcal{L}_{X_{T}} \omega_{0}\right]=0
$$

Since X_{T} is Hamiltonian vector field we have $\mathcal{L}_{X_{T}} \omega_{0}=0$. Therefore we arrive at

$$
\mathcal{L}_{X_{T}}\left[i\left(\Gamma_{H}\right) \omega_{0}\right]=\mathrm{d}\left[X_{T}(H)\right]=0 .
$$

Hence the function $X_{T}(H)=\alpha$ must be a numerical constant.
To prove the next proposition we will make use of the time-dependent Hamiltonian formalism. The time-dependent phase space is now the manifold $M=T^{*} Q \times \mathbb{R}$, and the fundamental geometric structure on M is the exact two-form of contact Ω_{H} defined as

$$
\Omega_{H}=\omega_{0}+\mathrm{d} H \wedge \mathrm{~d} t
$$

The dynamics is given by the unique vector field $\widetilde{\Gamma}_{H}$ defined on $M=T^{*} Q \times \mathbb{R}$ as solution of the following two equations

$$
i\left(\widetilde{\Gamma}_{H}\right) \Omega_{H}=0 \quad i\left(\widetilde{\Gamma}_{H}\right) \mathrm{d} t=1
$$

In coordinates $\widetilde{\Gamma}_{H}$ takes the form

$$
\widetilde{\Gamma}_{H}=\left(\frac{\partial H}{\partial p_{j}}\right) \frac{\partial}{\partial q_{j}}-\left(\frac{\partial H}{\partial q_{j}}\right) \frac{\partial}{\partial p_{j}}+\frac{\partial}{\partial t} .
$$

Here $\widetilde{\Gamma}_{H}$ is usually called [24] the suspension of Γ_{H}.
At this point we make the following observation. If Γ is a differentiable vector field on an m-dimensional manifold M then the maximun number of independent functions which are invariant along the integral curves of Γ is $N=m-1$. So Γ_{H} can have a maximun number of $N=2 n-1$ time-independent integrals since it is defined on $\left(T^{*} Q, \omega_{0}\right)$. However, $\widetilde{\Gamma}_{H}$, as defined in $\left(T^{*} Q \times \mathbb{R}, \Omega_{H}\right)$, can admit $N=2 n$ independent time-dependent integrals.

Proposition 3. Let T be a time-independent function, X_{T} its Hamiltonian vector field, and suppose that X_{T} is a dynamical but non-Cartan symmetry. Then the time-dependent function I^{t} defined as

$$
I^{t}=T+X_{T}(H) t
$$

is a time-dependent constant of motion.
Proof. The inner product of X_{T} with Ω_{H} is given by

$$
\begin{aligned}
i\left(X_{T}\right) \Omega_{H} & =i\left(X_{T}\right) \omega_{0}+\left[i\left(X_{T}\right) \mathrm{d} H\right] \mathrm{d} t \\
& =\mathrm{d} T+X_{T}(H) \mathrm{d} t=\mathrm{d}(T+\alpha t)
\end{aligned}
$$

where we have taken into account that α is a numerical constant. Therefore

$$
\begin{aligned}
\widetilde{\Gamma}_{H}(T+\alpha t) & =i\left(\widetilde{\Gamma}_{H}\right) i\left(X_{T}\right) \Omega_{H} \\
& =-i\left(X_{T}\right) i\left(\widetilde{\Gamma}_{H}\right) \Omega_{H}=0
\end{aligned}
$$

and the proposition is proved.
Now suppose that not one but two different dynamical symmetries $X_{i}, i=1,2$, of such a class for the same dynamical vector field Γ_{H}, and suppose that both X_{i} are Hamiltonian vector fields. Let us denote by $T_{i}, i=1,2$, the two independent Hamiltonian functions. Then we have the following property:

Proposition 4. The vector field X_{12} defined as

$$
X_{12}=\alpha_{2} X_{1}-\alpha_{1} X_{2}
$$

is a Cartan symmetry.
Proof. The vector field X_{12} is a symmetry of the Hamiltonian

$$
\begin{aligned}
X_{12}(H) & =\alpha_{2} X_{1}(H)-\alpha_{1} X_{2}(H) \\
& =\alpha_{2} \alpha_{1}-\alpha_{1} \alpha_{2}=0 .
\end{aligned}
$$

X_{12} is also a symmetry of the symplectic form since it is linear combination of Hamiltonian vector fields. Thus X_{12} is a Cartan symmetry.

Moreover, the inner product of X_{12} with the symplectic form is given by

$$
\begin{aligned}
i\left(X_{12}\right) \omega_{0} & =\alpha_{2} i\left(X_{1}\right) \omega_{0}-\alpha_{1} i\left(X_{2}\right) \omega_{0} \\
& =\alpha_{2} \mathrm{~d} T_{1}-\alpha_{1} \mathrm{~d} T_{2}=\mathrm{d}\left(\alpha_{2} T_{1}-\alpha_{1} T_{2}\right)
\end{aligned}
$$

Thus the vector field X_{12} determines the function $I_{12}=\alpha_{2} T_{1}-\alpha_{1} T_{2}$ as its associated (timeindependent) constant of motion.

Thus, according to this proposition, every pair of two Hamiltonian vector fields which are dynamical but non-Cartan symmetries determine one Cartan symmetry.

Notice that systems possessing these rather special Cartan symmetries (arising from the pairing of two dynamical symmetries) must necessarily be systems with time-dependent constants. This means a restriction since, as stated above, the number of known timeindependent systems possessing time-dependent integrals seems to be very reduced. In any case, the existence of such a coupling between the two function $\left(T_{1}, T_{2}\right)$ gives rise to a new integral of motion.

Crampin proved [28] that, in the tangent bundle $T Q$, the existence of a 'dynamical but non-Cartan symmetry' which is projectable (i.e. a non-Noether Lie symmetry) is related to the existence of an alternative Lagrangian. Alternative Lagrangians are related to new symplectic structures and to non-Noether constants of motion. So there is a relation between non-Cartan symmetries and alternative ways of obtaining integrals of motion. We point out that the result given by proposition 4 do not require the condition of projectability.

For the $n=2$ case, if H is integrable with involutive integrals I_{1}, I_{2}, the existence of two generating functions (T_{1}, T_{2}) leads to a new function I_{12}. If $\mathrm{d} I_{1} \wedge \mathrm{~d} I_{2} \wedge \mathrm{~d} I_{12} \neq 0$ then I_{12} is independent and H is superintegrable. The important point is that this superintegrability must be considered as a consequence of the previous existence of the pair $\left(T_{1}, T_{2}\right)$.

The generalization of this last result to the general n-dimensional case is as follows. Let the n-dimensional Hamiltonian system $\left(T^{*} Q, \omega_{0}, H\right)$ be integrable with n independent and involutive integrals $I_{k}, k=1,2, \ldots, n$, arising from n Cartan (or Noether) symmetries. If this system has n independent 'dynamical but non-Cartan symmetries' represented by the Hamiltonian vector fields $X_{r}, r=1,2, \ldots, n$, then the system has, in addition to the n fundamental integrals, other
(i) n functionally independent time-dependent integrals I_{r}^{t};
(ii) $\frac{1}{2} n(n-1)$ additional time-independent integrals $I_{r s}$.

If the vector fields X_{r} are independent then so are the n Hamiltonian functions $T_{r}, r=$ $1,2, \ldots, n$, and, because of this, the system of $n-1$ functions $I_{r r+1}$ is also independent. Moreover the independence of the set $\left\{I_{r}, T_{r}\right\}$ is a sufficient condition for the independence of $\left\{I_{r}, I_{r r+1}\right\}$. In this case the system is not only integrable but also superintegrable.

4. Superintegrability of the harmonic oscillator: II. A geometric approach

The n-dimensional harmonic oscillator

$$
H_{\mathrm{HO}}=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\frac{1}{2} \sum_{j=1}^{n} \omega_{j}^{2} q_{j}^{2}
$$

is trivially integrable with the n one-degree of freedom energies as the n fundamental involutive integrals, i.e. $I_{j}=E_{j}, j=1,2, \ldots, n$.

Let us denote by $T_{r}=T_{r}(q, p), r=1,2, \ldots, n$, the following n functions:

$$
T_{r}=\sin ^{-1} z_{r} \quad z_{r}=\frac{\omega_{r} q_{r}}{\sqrt{\omega_{r}^{2} q_{r}^{2}+p_{r}^{2}}}
$$

Notice that every T_{r} is defined up to a multiple of 2π. So they must be considered as functions with values in S^{1}. In any case the associated vector fields $X_{r}, r=1,2, \ldots, n$, are given by

$$
X_{r}=-\Omega_{r} X_{r}^{0} \quad \Omega_{r}=\frac{\omega_{r}}{\omega_{r}^{2} q_{r}^{2}+p_{r}^{2}} \quad X_{r}^{0}=q_{r} \frac{\partial}{\partial q_{r}}+p_{r} \frac{\partial}{\partial p_{r}}
$$

(no summation over the index r). We have the following properties: (i) X_{r} is a symmetry of the symplectic form ω_{0} since X_{r} is Hamiltonian, (ii) X_{r} is not a symmetry of the Hamiltonan since $X_{r}\left(H_{\mathrm{HO}}\right)=-\omega_{r}$. So X_{r} is neither a Noether nor a Cartan symmetry. The important point is that X_{r} it is a symmetry of the dynamics. This last property, that can be proved by direct calculus, can also be seen in the two following ways.
(1) The Lie bracket of two Hamiltonian vector fields is (up to a minus sign) the Hamiltonian vector field of the Poisson bracket of the two Hamiltonians. So we have

$$
\left[X_{r}, \Gamma_{H}\right]=-X_{\left\{T_{r}, H\right\}}
$$

and

$$
\left\{T_{r}, H_{\mathrm{HO}}\right\}=i\left(X_{r}\right) i\left(\Gamma_{H}\right) \omega_{0}=X_{r}\left(H_{\mathrm{HO}}\right)=-\omega_{r} .
$$

Since the Hamiltonian vector field of a numerical constant vanishes, it follows that [X_{r}, Γ_{H}] $=0$.
(2) The second alternative approach is to prove that the vector field $\left[X_{r}, \Gamma_{H}\right]$ is in the kernel of the symplectic form
$i\left(\left[X_{r}, \Gamma_{H}\right]\right) \omega_{0}=\mathcal{L}_{X_{r}}\left[i\left(\Gamma_{H}\right) \omega_{0}\right]-i\left(\Gamma_{H}\right)\left[\mathcal{L}_{X_{r}} \omega_{0}\right]=\mathrm{d} X_{r}\left(H_{\mathrm{HO}}\right)=-\mathrm{d} \omega_{r}=0$.
Since ω_{0} is regular, the kernel is trivial and we arrive at $\left[X_{r}, \Gamma_{H}\right]=0$.
Thus every vector field $X_{r}=-\Omega_{r} X_{r}^{0}$ is a dynamical but non-Cartan symmetry of H_{HO}. Consequently we can apply the geometric formalism studied in section 3 .
(i) Every non-Cartan symmetry $X_{r}, r=1,2, \ldots, n$, determines, in a direct way, the time-dependent function $I_{r}^{t}=T_{r}-\omega_{r} t$ as associated constant of motion. Hence $H_{\text {Hо }}$ has a time-dependent family of $N=2 n$ independent integrals given by $\left\{E_{r} ; I_{r}^{t}\right\}$.
(ii) The n functions T_{r} belong to the set $\mathcal{F}\left(T^{*} Q, S^{1}\right)$ of functions of $T^{*} Q$ to S^{1}. This set is is a \mathbf{Z}-modulus (not a vector space) and, because of this, linear combinatios of functions in this set are well defined only if the coefficients are integers. Thus if $\omega_{r} / \omega_{s}=m_{r} / n_{s}$ then everyone of the vector fields $X_{r s}=\omega\left(m_{s} X_{r}-n_{r} X_{s}\right), r, s=1,2, \ldots, n$, is a Cartan symmetry with the function $I_{r s}=\omega\left(m_{s} T_{r}-n_{r} T_{s}\right)$ as Hamiltonian function. Hence H_{HO} has, in the particular rational case, the time-independent family of functions $\left\{E_{r} ; I_{r s}\right\}$ as a set of integrals of motion.

The Z-modulus property can also be approached as follows. The functions T_{r} are multivaluated but their differentials $\beta_{r}=\mathrm{d} T_{r}$ are well-defined one-forms and determine locally Hamiltonian vector fields. Although the exclusion of the origin makes the manifold noncontractible (topologically non-trivial), the closed one forms β_{r} are of integer class ($\bmod 2 \pi$). Thus only integer combinations generate again closed one forms of integer class.

Notice that the functions $I_{r s}$ are antisymmetric in the two indices, i.e. $I_{s r}=-I_{r s}$, so the total number of elements in the family $I_{r s}$ is $(1 / 2) n(n-1)$. This means an excessive number of integrals, but one can choose, inside this family, a more reduced one-parameter subfamily with just $n-1$ independent functions. An appropriate subfamily is $I_{r r+1}$ that couples every degree of freedom with the following one. The independence of the family $\left\{T_{r} ; r=1, \ldots, n\right\}$ implies the independence of $\left\{I_{r r+1} ; r=1, \ldots, n-1\right\}$, and the property $\mathrm{d} E_{r} \wedge \mathrm{~d} E_{s} \wedge \mathrm{~d} I_{r s} \neq 0, r \neq s$, implies the independence of the total set $\left\{E_{r} ; I_{r r+1}\right\}$. Moreover, in this case the ($2 n$)-form Ω defined as $\Omega=\mathrm{d} E_{1} \wedge \cdots \wedge \mathrm{~d} E_{n} \wedge \mathrm{~d} T_{1} \wedge \cdots \wedge \mathrm{~d} T_{n}$ is a volume form.

Thus the superintegrability of the n-dimensional harmonic oscillator with rational frequencies is a consequence of the existence of n dynamical but non-Cartan symmetries.

Finally we notice that the compatibility beteween points (i) and (ii) can also be considered from a geometric approach. It is known that superintegrability in compact manifolds leads to closed trajectories and implies periodicity. This is the case of the Harmonic oscillator where $T^{*} Q$ is foliated by the n-dimensional tori T^{n} defined by $E_{r}=$ constant. The vector field Γ_{H}
is tangent to this foliation and, as the leaves are compact, the integral curves of Γ_{H} must be closed. This property can only be satisfied if ω_{r} / ω_{s} is rational. However, if we consider the time-dependent suspension $\widetilde{\Gamma}_{H}$ defined in $T^{*} Q \times \mathbb{R}$ then we move out of the compact tori. The time-dependent phase space $T^{*} Q \times \mathbb{R}$ is foliated by $(n+1)$-dimensional cylinders $T^{n} \times \mathbb{R}$, the vector field $\widetilde{\Gamma}_{H}$ is tangent to this foliation but, as in this case the leaves are non-compact, there is no additional condition and the time-dependent integrals I_{r}^{t} are always well defined. The integral curves of $\widetilde{\Gamma}_{H}$ are open curves that wind up the axis \mathbb{R}.

Acknowledgments

We thank J F Cariñena for comments on the theory of superintegrable systems and hidden symmetries. This paper is part of a project supported by grants PB-96-0717 and AEN-971680 (DGICYT, Madrid).

References

[1] Henon M 1983 Numerical exploration of Hamiltonian systems Chaotic Behaviour of Deterministic Systems ed G Iooss, R H Helleman and R Stora (Amsterdam: North-Holland)
[2] Fris T I, Mandrosov V, Smorodinsky Y A, Uhlir M and Winternitz P 1965 Phys. Lett. 16 354-6
[3] Makarov A A, Smorodinsky Y A, Valiev K and Winternitz P 1967 Nuovo Cimento 52 1061-84
[4] Wojciechowski S 1983 Phys. Lett. A 95 279-81
[5] Chetouani L, Guechi L and Hammann T F 1987 Phys. Lett. A 125 277-81
[6] Carpio-Bernido M V and Bernido C C 1987 Phys. Lett. A 134 395-9
[7] Hietarinta J 1987 Phys. Rep. 147 87-154
[8] Perelomov A M 1990 Integrable Systems of Classical Mechanics and Lie Algebras (Basle: Birkhäuser)
[9] Kibler M and Winternitz P 1990 Phys. Lett. A 147 338-42
[10] Evans N W 1990 Phys. Rev. A 41 5666-76
[11] Evans N W 1990 Phys. Lett. A 147 483-6
[12] Evans N W 1991 J. Math. Phys. 32 3369-75
[13] del Olmo M A, Rodríguez M A and Winternitz P 1993 J. Math. Phys. 34 5118-39
[14] del Olmo M A, Rodríguez M A and Winternitz P 1996 Fortschr. Phys. 44 199-233
[15] Calzada J A, del Olmo M A and Rodríguez M A 1997 J. Geom. Phys. 23 14-30
[16] Grosche C, Pogosyan G S and Sissakian A N 1995 Fortschr. Phys. 43 453-521
[17] Grosche C, Pogosyan G S and Sissakian A N 1995 Fortschr. Phys. 43 523-63
[18] Salas-Brito A L, Núñez-Yépez H N and Martínez-Romero R P 1997 Int. J. Modern Phys. 12 271-6
[19] Rañada M F 1997 J. Math. Phys. 38 4165-78
[20] Gonera C 1998 J. Phys. A 31 4465-72
[21] Rañada M F 1999 Superintegrability of the Calogero-Moser system: Constants of motion, master symmetries, and time-dependent symmetries J. Math. Phys. to be published
[22] Tabor M 1989 Chaos and Integrability in Nonlinear Dynamics (New York: Wiley)
[23] Fradkin D M 1965 Am. J. Phys. 33 207-11
[24] Abraham R and Marsden J 1978 Foundations of Mechanics (Reading, MA: Benjamin)
[25] Marmo G, Saletan E J, Simoni A and Vitale B 1985 Dynamical Systems: A Differential Geometric Approach (Chichester: Wiley)
[26] Libermann P and Marle C M 1987 Symplectic Geometry and Analytical Mechanics (Dordrecht: Reidel)
[27] de León M and Rodrigues P R 1989 Methods of Differential Geometry in Analytical Mechanics (Amsterdam: North-Holland)
[28] Crampin M 1983 J. Phys. A: Math. Gen. 16 3755-72

